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 Sampling plays a vital role in digital signal processing, as the continuous-time signal should be 

sampled and then rebuilt from its samples, this approach complies with the traditional sampling 

theorem. The sampling theorem for the conventional Fourier Transform should be generalized to the 

continuous fractional Fourier transform case since the continuous fractional Fourier transform 

(FRFT) has developed into a highly effective tool in signal processing, optics, and other 

Engineering and scientific applications. The continuous fractional Fourier transform of a specific 

rotation angle is proposed in this publication, along with a method for sampling continuous band-

limited signals to derive their discrete-time versions without aliasing. The method is developed from 

the sampling theorem for the conventional Fourier transform and the integral formulation of the 

continuous fractional Fourier transform. The lemmas and corollary put forward in this work are 

generalizations of the Fourier transform's traditional form. Finally, the numerical outcomes 

convincingly support our study. 
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1. Introduction   

Any digital application, such as in signal processing, relies on 

the sampling theorem to sample a continuous signal and 

reconstruct it from its samples. 

According to Shannon sampling theory [1], which is 

frequently applied to band-limited continuous-time signals in the 

FT domain, the sampling rate—also referred to as the Nyquist 

rate [2]—must be at least twice the maximum frequency in the 

signal in order to reconstruct the band-limited signal from its 

samples. 

A powerful new time-frequency analysis tool with numerous 

applications in optics and other engineering fields [3–12], the 

FRFT can also be seen as a generalization of the traditional FT. 

Recent work [13–19] has resulted in sampling theorems 

related to the FRFT, which should be considered as a 

generalization of the sampling theorem for the FT. The frequency 

domain application of the conventional Shannon theorem was 

developed by Xia and Zayed [13, 20], The FT was expanded by 

Erseghe et al. [21] to include variations for continuous and 

discrete-time signals, which is equivalent to the FRFT. Shannon's 

interpolation theorem was generalized for the FRFT [14]. In 

order to reconstruct a band-limited signal, Zayed [22] developed 

two sampling formulas that use samples from the signal and its 

Hilbert transformation collected at half the Nyquist rate. Tao et 

al.'s [17] generalization of the conventional sample rate 

conversion theory led to the derivation of the sampling theorem 

for band-limited signals in the FRFT domain. A necessary and 

sufficient condition for function space uniform sampling was 

created using FRFT by Liu et al. [23] and Ma et al. new estimates 

of the fractional power spectral density and fractional correlation 

function are proposed using non-uniform sampling of random 

signals with non-stationarity and limited bandwidths in the 

fractional Fourier domain. 

This paper's primary goal is to present the sampling theorem 

in the FRFT domain for continuous band-limited signals with 

constrained bandwidth for a specific angle of rotation in the 

Time-Frequency plane. The proof is based on the sampling 

theorem in the conventional FT and the integral definition of the 

FRFT. Section II will discuss the Shannon theory in conventional 

FT as well as preliminary information on the definition and 

fundamental characteristics of FRFT and Time-Frequency plane. 

The fundamental contribution of this study is the sampling 

theorem in the FRFT domain, which will be presented in Section 
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III. The simulation results are provided in Section IV. Conclusion 

is drawn in Section V.   

2. Preliminaries 

2.1. The FRFT 

The first attempt to define the FRFT was undertaken in 1939 

by Kober [25]. Certain kinds of ordinary and partial differential 

equations that emerge in quantum mechanics need to be solved, 

Namias [26] rediscovered the FRFT in 1980. Later, his findings 

were improved [22], and the FRFT was created as a more 

inclusive version of the FT. The FRFT has numerous uses in the 

fields of optics and signal processing [7,10].  

The integral definition of the 𝑎𝑡ℎ order FRFT of a function 

(signal) 𝑥(𝑡) has been defined as [3]:  

ℱ𝛼{𝑥(𝑡)}(𝑡𝛼) = 𝑋(𝑢) = ∫ 𝑥(𝑡)
∞

−∞

 𝐾𝛼(𝑡, 𝑢)𝑑𝑡#(1𝑎)  

Where:  

𝐾𝛼(𝑡, 𝑢) =

{
 

 √
1−𝑖 𝑐𝑜𝑡(𝛼)

2𝜋
 𝑒𝑥𝑝[𝑖𝜋((𝑡2 + 𝑢2)𝑐𝑜𝑡(𝛼) − 2𝑡𝑢 𝑐𝑠𝑐(𝛼))] , 𝑖𝑓 𝛼 ≠ 𝑛𝜋

𝛿(𝑢 − 𝑡) ,  𝑖𝑓 𝛼 =  2𝑛𝜋.

𝛿(𝑢 − 𝑡) ,          𝑖𝑓 𝛼 = (2𝑛 + 1)𝜋

#(1𝑏)  

  and 

𝛼 =
𝑎𝜋

2
 . #(1𝑐)  

The FRFT generalizes the FT to an arbitrary fractional order 

𝑎 and reduces to the FT for 𝑎 = 1 [27].  

2.2. Time-Frequency plane and its relation to the FRFT  

The continuous function (signal) is rotated in the Time-

Frequency plane by an arbitrary angle 𝛼 by the FRFT. Thus, the 

FRFT is also known as the angular Fourier transform. 

The function (signal) x(t) along the u-axis in the Time-

Frequency plane with an angle 𝛼 of is labelled as the fractional 

Fourier representation as 𝑋𝛼(𝑢), as seen in Fig. 1. 

For 𝛼 = 0 ; 𝑋𝛼(𝑢)  is the original function, and ℱ𝛼  is the 

identity operator. 

For 𝛼 =
𝜋

2
; 𝑋𝛼(𝑢)  is the function represented on the 

frequency axis, and ℱ𝛼  is the Fourier transform operator. 

For 𝛼 = 𝜋; 𝑋𝛼(𝑢) is the function represented on the negative 

time axis, and ℱ𝛼  has the same effect as flipping the original 

function. 

For 𝛼 =
3𝜋

2
; 𝑋𝛼(𝑢) depicted on the minus frequency axis. In 

this case, ℱ𝛼  has the same result as inverting the function's 

Fourier transform. 

In general:  

𝑋𝛼(𝑢) = 𝑋𝛼+2𝑛𝜋(𝑢)  , n is an integer. #(2)  

The function represented by 𝑋𝛼(𝑢) for 0 < 𝛼 <
𝜋

2
 is shown 

along an axis that is in the first quadrant of the Time-Frequency 

plane and is related to other Time-Frequency representations like 

the Wigner transform (WT) and short-time Fourier Transform 

(STFT). 

 
Fig. 1.  The time-frequency plane 

 

2.3. Sampling theory 

In Engineering applications and digital signal processing, the 

analog signal needs to be converted to a digital form to be 

processed by the computer, and then reconstructing the 

processing signal from its samples.  

Analogue signal values at distinct time instants are 

represented by the sampling process. 

𝑡 = 𝑛𝑇𝑠; 𝑛 = 0, 1, 2, … #(3)  

 Where 𝑇𝑠  is the sampling period. This results in creating 

discrete-time signal.  

As FT is a powerful tool for frequency domain analysis of 

continuous band-limited signal  

𝑥(𝑡); 𝑡𝑚𝑖𝑛 < 𝑡 < 𝑡𝑚𝑎𝑥#(4)  

But to implement the FT integral of 𝑥(𝑡)  by a computer 

program numerically, the discrete time signal  

𝑥[𝑛] = x(𝑛𝑇𝑠); 𝑛 = 0, 1, 2, …#(5)  

Corresponding to 𝑥(𝑡) should be obtained. This can be done 

by applying the sampling process to (𝑡) , the FT output of 𝑥[𝑛] is 
𝑋𝑠(𝑓), which is a collection of repeated versions of 𝑋(𝑓) (the FT 

output of 𝑥(𝑡)) scaled by the sampling frequency 𝑓𝑠 =
1

𝑇𝑠
, and 

repeated every 𝑓𝑠. These repeated versions are called images. 

The sampling frequency should be larger than twice the signal 

bandwidth, or more than twice the maximum frequency (𝑓𝑚), to 

perfectly reconstruct the analogue signal from its spectrum. 

which is the conventional Nyquist rate [1,2], i.e. 

𝑓𝑠 > 2 𝑓𝑚#(6)  

The periodicity of 𝑋𝑠(𝑓)  results in redundant frequency 

information (aliasing frequencies) in the spectrum of 𝑥[𝑛].   
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3. Proposed technique 

In this section, the FRFT domain of Shannon sampling theory 

will be proved in a simple way by using the main definition of 

FRFT and conventional Shannon sampling theorem for the FT. 

Lemma 1: The FT of the sampled continuous band-limited 

signal 𝑥(𝑡)  contains non-redundant information in the interval 

𝑓 ∈ [0,
𝑓𝑠

2
] 

where 

𝑓𝑠  is the sampling frequency of the signal complied with 

conventional sampling theory. 

Proof 

Consider Sinusoidal signal with single frequency 𝑓0  

𝑥(𝑡) = 𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑡 + ∅)                                                    (7)
Sample 𝑥(𝑡)  using sampling frequency 𝑓𝑠 > 2 𝑓0 , to produce 

sampled version of  𝑥(𝑡) is 𝑥[𝑛] which is defined as: 

𝑥[𝑛] = 𝐴 𝑐𝑜𝑠(2𝜋𝑓0𝑛𝑇𝑠 + ∅) = 𝐴 𝑐𝑜𝑠 (2𝜋(𝑙𝑓𝑠 ± 𝑓0)
𝑛

𝑓𝑠
+ ∅)#(8) 

implies that, the spectrum of the signal will be repeated at 

frequencies: 

𝑙𝑓𝑠 ± 𝑓0 ; 𝑙 = 0, 1, 2, …#(9)  

To get the basic spectrum and avoid aliasing, then  

𝑓𝑠 − 𝑓0 > 𝑓0#(10𝑎)  

∴ 𝑓𝑠 > 2𝑓0#(10𝑏)  

And the basic spectrum of the signal should be viewed only in 

the period: 

𝑓𝑠 − 𝑓0 > 𝑓 ≥ 𝑓0#(11)  

Which can be achieved for: 

𝑓 =
𝑓𝑠
2
#(12)  

As 𝑓 in that case will be greater than or equal to 𝑓0 and in the 

same time less than 𝑓𝑠 − 𝑓0. 

So  

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2
#(13)  

The result above can be generalized for any expandable signal 

with maximum frequency 𝑓𝑚  as a linear combination of 

sinusoidal signals can be used to express the signal. 

Q.E.D. 

Lemma 2: The continuous-time band-limited signal in the 

FRFT, 𝑋(𝑡𝛼), contains non-redundant information in the interval 

𝑡𝛼 ∈ [0,
𝑓𝑠

2
sin 𝛼] 

where 

𝑓𝑠  is the sampling frequency of the signal complied with 

conventional sampling theory. 

Proof 

The FRFT definition for signal 𝑥(𝑡)  given by (1) can be 

expressed as [14]: 

ℱ𝛼{𝑥(𝑡)}(𝑡𝛼) = 𝑋(𝑡𝛼) = √
1 − 𝑖 cot 𝛼

2𝜋
 𝑒𝑖𝜋𝑡𝛼

2 cot 𝛼∫ 𝑒𝑖𝜋𝑡
2 cot 𝛼𝑥(𝑡)

∞

−∞

 𝑒−𝑖2𝜋𝑡𝑡𝛼 csc𝛼𝑑𝑡. #(14) 

Let 

𝑡𝛼 csc 𝛼 = 𝑓#(15)  

ℱ𝛼{𝑥(𝑡)}(𝑡𝛼) = 𝑋(𝑡𝛼) = √1 − 𝑖 cot 𝛼  𝑒
𝑖0.5𝜋𝑓̂2 sin 2𝛼ℱ

𝜋
2{𝑒𝑖𝜋𝑡

2 cot𝛼𝑥(𝑡)}(𝑓̂)#(16) 

where  ℱ
𝜋

2  is the FT operator defined in terms of frequency as  

ℱ
𝜋
2{𝑥(𝑡)}(𝑓) = 𝑋(𝑓) =

1

√2𝜋
∫ 𝑥(𝑡)
∞

−∞

 𝑒−𝑖2𝜋𝑡𝑓𝑑𝑡#(17)  

This means that 𝑋(𝑡𝛼) can be defined by the conventional FT 

representation of 𝑒𝑖𝜋𝑡
2 cot𝛼𝑥(𝑡), with frequency 𝑓 . 

Lemma 1 implies that 

𝑓𝑚𝑎𝑥 =
𝑓𝑠
2
 . #(18)  

Hence 

(𝑡𝛼)𝑚𝑎𝑥 =
𝑓𝑠
2
 sin 𝛼 #(19)  

Q.E.D. 

From lemma 2; there are two approaches for the suggested 

procedure of time-frequency analysis of continuous band-limited 

signal 𝑥(𝑡); both approaches will give the same result. 

Approach (1): 

Get 𝑥[𝑛] = 𝑥(𝑛𝑇𝑠);  𝑛 = 0,1,2, … from 𝑥(𝑡) 

 where 

  𝑇𝑠 is the sampling period (𝑇𝑠 =
1

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

𝑓𝑠
)  

and 

  𝑓𝑠 > 2 𝑓𝑀 (The Nyquist rate for conventional FT) 

  𝑓𝑀 represents the value of the maximum frequency in 𝑥(𝑡). 

Get 𝑋(𝑡𝛼) by evaluating the FRFT integral numerically for 

angle 𝛼 of 𝑥[𝑛]. 

Plot 𝑋(𝑡𝛼) versus 𝑡𝛼 from 𝑡𝛼 = 0 to 𝑡𝛼 =
𝑓𝑠

2
 sin 𝛼. 

Approach (2): 

Get 𝑥[𝑛] = 𝑥(𝑛𝑇𝑠);  𝑛 = 0,1,2, … from 𝑥(𝑡) 

  where 

  𝑇𝑠 is the sampling period (𝑇𝑠 =
1

𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦
=

1

𝑓𝑠
)  
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   and 

   𝑓𝑠 > 2 𝑓𝑀 csc 𝛼 - the Nyquist rate for FRFT- 

  𝑓𝑀 represents the value of the maximum frequency in 𝑥(𝑡). 

Evaluate the FRFT integral numerically at angle 𝛼 of 𝑥[𝑛] to 

get (𝑡𝛼) . 

Plot 𝑋(𝑡𝛼) versus 𝑡𝛼 from 𝑡𝛼 = 0 to 𝑡𝛼 =
𝑓𝑠

2
 . 

Corollary 1: A continuous band-limited sinusoidal signal 

with frequency 𝑓0  sampled using sampling frequency 𝑓𝑠 > 2 𝑓0 , 

then its  𝑋(𝑡𝛼) in the FRFT domain will contain information at 

values: 

𝑡𝛼 = (𝑘𝑓𝑠 ± 𝑓0) sin 𝛼  ; 𝑘 = 0, 1, 2, … #(20)    

 

Corollary 1 concluded from the FT case of the continuous 

band-limited sinusoidal signal as in Eq. (9) and lemma 2. 

4. Simulation Results 

In preceding section, it has been proven that 𝑋(𝑡𝛼)  is the 

FRFT of continuous band-limited signal 𝑥(𝑡)  with aliasing 

frequencies located at (𝑙𝑓𝑠 ± 𝑓0) 𝑠𝑖𝑛(𝛼) ; 𝑙 = 0, 1, 2, …  and the 

principal alias frequency will be in the region of  

𝑡𝛼 ∈ [0,
𝑓𝑠

2
 sin 𝛼 ]. 

The following simulation example will consolidate the idea. 

 Example 1: 

Consider a continuous band-limited signal 𝑥(𝑡) consisting of 

three frequency components such that: 

𝑥(𝑡) = sin 2𝑓1𝜋𝑡 + sin 2𝑓2𝜋𝑡 + sin 2𝑓3𝜋𝑡 ;   0 s ≤ 𝑡 ≤ 3s#(21)  

with 𝑓1 = 500 𝐻𝑧 ; 𝑓2 = 1 𝑘𝐻𝑧 ; 𝑓3 = 1.5 𝑘𝐻𝑧.  

The Recursive Adaptive Lobatto Quadrature (RALQ) method 

[27] is used to evaluate |𝑋 (𝑡𝜋
6
)| , |𝑋 (𝑡𝜋

4
)|, |𝑋 (𝑡𝜋

3
)|  , |𝑋 (𝑡𝜋

2
)| 

numerically using sampling rate 

𝑓𝑠 = 2.5 ∗ 1500 𝐻𝑧 = 3.75 𝑘𝐻𝑧 . 

And  |𝑋 (𝑡𝜋
6
)|  , |𝑋 (𝑡𝜋

4
)| ,  |𝑋 (𝑡𝜋

3
)|  , |𝑋 (𝑡𝜋

2
)|  are plotted 

versus 𝑡𝛼 for the following two cases: 

Case (1): ( 𝑡𝛼 = 0 to 𝑡𝛼 =
𝑓𝑠

2
 𝑠𝑖𝑛(𝛼), as in Fig. 2.), there is 

only three components (principal aliasing component) appeared 

related to three frequency components 𝑓1, 𝑓2, 𝑓3 , for 𝑡𝛼  exactly 

equal to 𝑓1  sin 𝛼 , 𝑓2  sin 𝛼 , 𝑓3  sin 𝛼 ;  

∀ 𝛼 =
𝜋

6
,
𝜋

4
,
𝜋

3
,
𝜋

2
 . 

Case (2): (  𝑡𝛼 = 0 to 𝑡𝛼 =
𝑓𝑠

2
 , as in Fig. 3.), there exists other 

aliasing components rather than the three principal aliasing 

components are appearing for case of 𝛼 =
𝜋

6
,
𝜋

4
 and their location 

are exactly calculated by Eq. (20), which confirm lemma 2 and 

corollary 1. 

5. Conclusions  

This work deals with the sampling theorem of a continuous 

band-limited signal for FRFT at a specific rotation angle. This 

study derives the sampling theorem for the FRFT of signals from 

the FRFT integral definition and the sampling theorem for 

conventional FT. Two techniques for sampling the signal before 

determining its FRFT for a particular rotation angle are proven to 

be effective in simulations. 
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(a)                                                                       (b) 

 
(c)                                                                (d) 

 

Fig. 2: (a) |𝑿 (𝒕𝝅
𝟔
)| for case1; (b) |𝑿 (𝒕𝝅

𝟒
)| for case 1; 

              (c) |𝑿 (𝒕𝝅
𝟑
)| for case 1; (d) |𝑿 (𝒕𝝅

𝟐
)| for case 1. 

 

(a)   (b) 

 
(c)              (d) 

                            

Fig. 3:    (a) |𝑿 (𝒕𝝅
𝟔
)| for case 2; (b) |𝑿 (𝒕𝝅

𝟒
)| for case 2; 

                (c) |𝑿 (𝒕𝝅
𝟑
)|  for case 2; (d) |𝑿 (𝒕𝝅

𝟐
)| for case 2 
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 Abbreviation and symbols 

FT Fourier transform 

FRFT Continuous fractional Fourier transform. 

STFT Short time Fourier transform. 

T Wigner transform 

RALQ Recursive adaptive Lobatto quadrature. 
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